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able to preserve one-dimensional spherical symmetry in a two-dimensional cylindrical
geometry when computed on an equal-angle-zoned initial grid. Unlike many previous
area-weighted schemes that possess the spherical symmetry property, our scheme is dis-
cretized on the true volume and it can preserve the conservation property for all the con-
Lagrangian scheme served.variables inclu.ding t.iens'ity, rnome.ntum and total energy. Several two-dimensional
Symmetry preservation numerical examples in cylindrical coordinates are presented to demonstrate the perfor-
Conservative mance of the scheme in terms of symmetry, accuracy and non-oscillatory properties.
Cell-centered © 2010 Elsevier Inc. All rights reserved.
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1. Introduction

In numerical simulations of multidimensional fluid flow, there are two typical choices: a Lagrangian framework, in which
the mesh moves with the local fluid velocity, and an Eulerian framework, in which the fluid flows through a grid fixed in
space. More generally, the motion of the grid can also be chosen arbitrarily, resulting in the so-called Arbitrary Lagrang-
ian-Eulerian method (ALE; see, e.g. [13]).

Both the Eulerian and Lagrangian methods have their own advantages and disadvantages. For example, the Eulerian
method is easy to design arbitrarily high order schemes on the fixed grid so that it can simulate the smooth structure with
high resolution and capture the discontinuity sharply without oscillations. Comparing with the Lagrangian method, it also
has the advantage of being free from any trouble caused by grid distortion. Its main disadvantage lies in that it is relatively
difficult to treat multi-material problems. Comparing with the Eulerian method, the Lagrangian method can reduce the
numerical error which arises from the advection terms in the conservation equations and can capture material interfaces
sharply and automatically. Due to the grid movement with the fluid, the Lagrangian method may encounter grid distortion
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problems, which could be solved by using the ALE approach, that is, when the grid is distorted, we rezone the grid to the
optimal position and remap the variables from the old grid to the new grid.

Due to the distinguished advantage in capturing material interfaces sharply and automatically, the Lagrangian method is
widely used in many fields for multi-material flow simulations such as astrophysics and inertial confinement fusion (ICF). In
the past years, many efforts have been made to develop Lagrangian methods. Some algorithms are built on a staggered dis-
cretization in which velocity (momentum) is stored at vertices, while density and internal energy are stored at cell centers.
The density/internal energy and velocity are solved on two different control volumes, see, e.g. [20,1,4]. The dissipation of
kinetic energy into internal energy through shock waves is ensured by an artificial viscosity term [20,6,7]. Other algorithms
start from the cell-centered discretization in which density, momentum and energy are all centered within cells and evolved
on the same control volume. Advantages for the cell-centered schemes such as [11,19,8,9,16] include that this kind of meth-
ods is easy to remap when necessary and it does not require the addition of an explicit artificial viscosity for shock capturing.
Numerical viscosity contained in the exact or approximate Riemann solver is usually enough to stabilize the algorithm.

In a Lagrangian simulation, it is a critical issue for a scheme to preserve certain symmetry (for example, cylindrical or
spherical) in a coordinate system distinct from that symmetry. The importance of preserving physical symmetries in numer-
ical simulation is well realized. As in the simulation of implosion problem with strong compressions, the preservation of
spherical symmetry is significantly important, since the small deviation from spherical symmetry due to numerical errors
may be exaggerated by Rayleigh-Taylor or some other instabilities which may potentially produce unpredictably large
errors. On the other hand, to understand and predict the dynamics of implosion well, it is essential for us to know whether
the asymmetric numerical result is due to the discrete error or to the physical intrinsic behavior.

Concerning the issue related to spherical symmetry preservation in two-dimensional cylindrical coordinates many works
have been done mostly in the framework of staggered-grid hydrodynamics. The most widely used method that maintains
spherical symmetry exactly on an equal-angle-zoned grid in cylindrical coordinates is the area-weighted method
[26,2,22,25,4,17]. In this approach one uses a Cartesian form of the momentum equation in the cylindrical coordinate sys-
tem, hence integration is performed on area rather than on the true volume in cylindrical coordinates. However, these area-
weighted schemes might violate strict momentum and total energy conservation. This shortcoming of the schemes has been
partially corrected in [4] by constructing a compatible area-weighted scheme which can preserve the conservation of total
energy. However it seems that their flaw in the loss of momentum conservation has not been solved so far. Differently from
the area-weighted scheme, Browne [3] presented a Lagrangian scheme termed “integrated total average” which is discret-
ized on the true control volume in cylindrical coordinates. The scheme has been proven to be able to preserve the desired
spherical symmetry in the two-dimensional cylindrical geometry for equal-angle zoning. Unfortunately, this scheme can
not keep the momentum and total energy conservation and has the potential trouble in that if the initial mass in neighboring
cells has a big difference, large error in acceleration may happen. Margolin and Shashkov use a curvilinear grid to construct
symmetry-preserving discretizations for Lagrangian gas dynamics [18]. They use high-order curves to connect the nodes, so
that planar, cylindrical and spherical symmetry are exactly preserved even on unequal-angle-zoned grids. In [5], Caramana
and Whalen study the way to achieve the one-dimensional symmetry, in a two-dimensional coordinate system distinct from
that symmetry by a simple modification of the gradient operator used to compute the force in a staggered-grid Lagrangian
hydrodynamics algorithm.

In this paper, we propose a new cell-centered Lagrangian scheme on quadrilateral grids for solving compressible Euler
equations in cylindrical coordinates. The scheme is based on a genuine volume discretization formulation. It preserves
the conservation of mass, momentum and total energy. It is also designed to be able to preserve one-dimensional spherical
symmetry in the two-dimensional cylindrical geometry for equal-angle-zoned initial grids.

An outline of the rest of this paper is as follows. In Section 2, we describe the individual steps of the Lagrangian scheme
with the symmetry and conservation properties for Euler equations in cylindrical coordinates. In Section 3, numerical exam-
ples are given to demonstrate the performance of the new Lagrangian method. In Section 4 we will give concluding remarks.

2. A cell-centered conservative Lagrangian scheme with the preservation of spherical symmetry in cylindrical
coordinates
2.1. The compressible Euler equations in a Lagrangian formulation in cylindrical coordinates

The compressible inviscid flow is governed by the Euler equations which have the following integral form in the Lagrang-
ian formulation

%ff{l(t)pdv =0,
%ffg(t)MdVZ 7fr(t)pnd57 (2.1)
%ffg(t)EdV == fr(g pu-nds,

where p is the density, p is the pressure, M and u are the vectors of momentum and velocity respectively, and E is the total
energy. n is the unit outward normal to the boundary I'(t).
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In this paper, we seek to study the axisymmetric compressible Euler system. Its specific form in the cylindrical coordi-
nates is as follows

%ffm)prdrdz =0,

%ff_quzrdrdz = — [rq pnrdl,

i lfqoMirdrdz = — [, pnrdl+ [[,, pdrdz,
& [fouErdrdz = — [, pu,rdl,

(22)

where z and r are the axial and radial directions respectively. M = (M, M,), u = (u,,u,), where M,, u,, M, u, are the momentum
and velocity components in the z and r directions respectively, n = (n,,n,) is the unit outward normal to the boundary I'(t) in
the z — r coordinates, and u, = (u,u,) - n is the normal velocity at I'(t).

The set of equations is completed by the addition of an equation of state (EOS) with the following general form

p=p(pe), (2.3)

where e = /% -1 lu? is the specific internal energy. Especially, if we consider the ideal gas, then the equation of state has a
simpler form,

p=(y—1)pe,
where 7y is a constant representing the ratio of specific heat capacities of the fluid.
2.2. The construction of the scheme

Fig. 2.1 indicates the cylindrical geometry (z,r) we are concerned with. The 2D spatial domain €2 is discretized into K x L
computational cells. Fig. 2.1 shows an equal-angle-zoned grids with logical [-lines radially outward and logical k-lines in the
angular direction. I, e is a quadrilateral cell constructed by the four vertices {(zx;,Tk1), (Zks+11, Tk11)s (Zkst 015 Thi1041),
(Zias1: Tie1) } Siegieg and Vi denote the area and volume of the cell II<+%,I+% withk=1,... K, I=1,...,L respectively, where
the volume of the cell refers to that of the circular ring obtained by rotating this cell around the z-axis. Here for simplicity
and without any confusion, the volume of the cell is considered as that of the circular ring on unit arc in the azimuthal direc-
tion, namely we omit the factor 27 which should appear in the integration of the real volume. The fluid velocity ((u, )k, (Ur)k.)
is defined at the vertex of grid.

In this paper, in order to obtain a scheme with both the spherical symmetry and conservation properties in a 2D cylin-
drical geometry, we will discretize the momentum equation in (2.2) along the local polar and angular directions (&, ) rather
than in the usual z and r directions in each cell, where ¢ is the radial direction passing through the cell center and the origin.
For an equal-angle-zoned grid, the cell shown in Fig. 2.1 is an equal-sided trapezoid, it has the property that the angles
between ¢ and the two equal sides of the cell are the same. 0 is the angular direction which is orthogonal to ¢, see
Fig. 2.1. After completing the momentum discretization, we transform them back to the original cylindrical (z,r) coordinates.
This is similar in spirit to the local characteristic decomposition procedure in limiting, where the relevant quantities are first
transformed to the local characteristic fields, then the limiting procedure is performed, and afterwards the result is trans-
formed back to the original component space. In the actual implementation, once the local ¢ and 6 directions for each cell
are determined at the initial time, these directions will not change for later time. To perform this local coordinate transfor-
mation, in each cell, the Euler equations in cylindrical coordinates are rewritten in the following form

A 1+2

Fig. 2.1. Equi-angular polar grid for cylindrical geometry.
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%ff,k%,%prdrdz =0,

d _ .

d ffllﬁ% l+%Mirdr dZ a fa’k—%.br% pnirdl + ff’l<+%.l+%p sin (p dr dZ7
d —

31 Ik%'%Mordrdz =- ft‘”k,%_u% pn,rdl+ [, ,’H%J%p cos @drdz,

4 Erdrdz = — u,rdl
dt ff’k%ﬂ% fmm%.u% bty ’

where M: and M, are the component values of momentum in the local ¢ and 6 directions respectively, n = (n;,n,) is the unit
outward normal of the cell boundary 81,~+%J.+1, and ¢ is the angle between the radial direction passing through the correspond-
ing point and the axial coordinate z. The value of ¢ is denoted as the radial radius which represents the distance to the origin.
Thus we have z=¢écos o, r=¢sing and & = vz2 + 12,

For the cell-centered scheme, all the variables except velocity are stored at the cell center of I, .., in the form of cell aver-

ages. For example, the values of the cell averages for the cell Ik+%,l+%v denoted by Pritints M
defined as follows
prdrdz,
11

p 1
kbl = V...
kg3 0 11

— 1
Mg = M;
by, Madrez

M’ and E,

kdtd kil 114 are

k+%.l+%
MY - Myrdrdz
kM3 TV, 0 )
k+3l+5 lk+%.l+%
E - Erdrdz
S A VAR )
k+7‘l+i M ’I<+%.I+%

where V.1 = [f;,  ~ rdrdz.Inour scheme, the cell averages of the above conserved variables are evolved in time, as a reg-
L

ular finite volume scheme.

2.2.1. Spatial discretization
We first formulate the semi-discrete finite volume scheme of the governing equations (2.4) as

0 %
pk+%,l+% k3043 0

d Mgk+%.l+%vk+%‘l+% = (pc)k+%,l+% Sin((pc)k+%,l+%5k+%.l+%
Ly . / Fdl+ , (2.5)
dt M k+;—,l+%vk+%.l+% mk-%.l»% 095)"*%-'*% COS((p‘)k+%-’+%S"+%~’+%
I3 0
Ek+%—.l+%vk+%.l+%
where
fo(,.uy)
SN : fope(U;, US
/ Fdl:/ LU, U0) g (2.6)
Oy 111 - alk+%.l+% fM"(U\Ts Uj,’)
fe(Uy Uy)
and
fD(Uv:UV) = O:
f «(U,,Uy) = pn,r,
S (Uy,Uy) = pi; 2.7)

fie(U,,Uy) = pnyr,
fe(Uy,Uy) = pu,r,

fo, f Mo f e and fr are the numerical fluxes for mass, &-momentum, 6-momentum and total energy across the cell boundary
respectively. U; = (p*, M, ,E™) are the values of density, normal component of momentum and total energy at both sides of
the cell boundary, where M; = (M{,M;) - n. (Po)isy14y is the pressure at the cell center. (¢,),,y,,y is set to be the angle
between the local ¢ direction and the z coordinate.

The first step for establishing the scheme is to determine the line integral term on the right side of Eq. (2.5). Suppose the

cell boundary 81,{%,% consists of M edges. The line integral concerned with the flux in Eq. (2.5) is discretized by the following
formula

k3,
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. M
/0 1 I~ > F(U™ U )Al", (2.8)

k+l.l+ m=1

where A" is the length of the cell edge m. F(Um+ U}'") is a numerical flux at the edge m.

To determine the fluxes F = (f D, f ME f MO fE) at the edges of the quadrilateral shaped cell, we first need to identify the val-
ues of the primitive variables at each side of the edge, that is U]'", m = 1,4. Here we use the information of the left and right
cell average values of the conserved variables. We define the direction of each edge of the cell to be the increasing direction
of the index k or [, for example the direction of the edge with two endpoints (k,I) and (k + 1,1) is from (k,[) to (k + 1,1). Thus, for
example, for Edge 1 in the cell [y, in Fig. 2.1, we obtain U;™ = (0.3 ps, (Mv)igrig Eiegien) @nd UL = (g gy M)y g
Eppypy) at the two sides of Edge 1.

Next we will compute the fluxes given the primitive states {U}*, m = 1,4} at each side of the cell boundary. Here as an
example, we use the Dukowicz numerical flux [12] to obtain the fluxes at the cell boundary by the following procedure.
Other numerical fluxes such as the Godunov or acoustic fluxes obtained from exact or approximate Riemann solvers can also
be used and the proof of the symmetry preservation property will go through as well. We have also tested our scheme on a
few other numerical fluxes such as the Godunov flux and the acoustic flux. The results show that these two fluxes can work
as well as the Dukowicz flux. For a more in-depth discussion on the differences in the features and numerical performance
between different numerical fluxes, we refer to our previous paper [8].

The velocity u* at Edge m is obtained by solving the following semi-quadratic equation,

pMA™ U — u [ (- ) + ™ AT Uy —um () — ug,) + P - pm =0, (2.9)
where

um = Ut — c2A™ U, = ul 4 cm 2™

pm+‘* _ pm+ _ %pm+(Cm+)2/Am+, pmf.* _ pm— _ ‘llpmf(cmf)Z/Amf. (2‘10)

Here p™*, um™* p™* are the left and right values of density, velocity and pressure at Edge m respectively, c* are the left and
right values of the sound speed at Edge m and A* are parameters directly related to the shock density ratio in the limit of
strong shocks. We refer to [12] for the details of the definition of A*. In particular, for an ideal gas, A*=(y + 1)/2.

After we have calculated the velocity u™, the pressure p™ at Edge m is easily obtained by the following equation

1

Pl =5 (" ") 45 p’"*A'“*Iu Ui | (7" — Upin) — p AT — | (" — Uy (2.11)
If p™ is found to be negative which predicts cavitation, then we set p™
Thus we can get the fluxes fp, fM_ fM” and fr at Edge m as follows
fo(Uy.U) =0,
fue (U7 UT) = prnnrn, (2.12)

fM“( v 7Um+) p ”ffrénv
fe(Uy U7 = pmupry,
where (n7',nj') and r}' are the unit outward normal direction and the r coordinate of the middle point of Edge m respectively.
We have now finished the determination of the flux term in Eq. (2.5).
As to the source term in Eq. (2.5), the way to determine (Pc)m%,u% is the key for obtaining the control volume scheme with
the spherical symmetry property. Here (p,), nyn is denoted as

1
Py =5 (' +P7), (2.13)

where p' and p? are the values of pressure at Edges 1 and 3 of Cell I, L0 (see Fig. 2.1) obtained in the above flux determi-
nation procedure. Based on the above manipulation, the scheme can preserve the conservation for all the conserved vari-
ables, since it is discretized on the true volume and the numerical flux across each cell boundary is single-valued for the
update of its two neighboring cells. Meanwhile, we can also prove that the scheme can keep the spherical symmetry prop-
erty if equi-angular polar initial grids are used. The proof will be given in the last subsection of this section.

2.2.2. The determination of the vertex velocity

The vertex velocity of the mesh is determined in the same way as in [8]. Briefly, we first obtain the tangential and normal
velocities along each edge, specifically, the tangential velocity of the vertex (or edge center) along the edge is defined as a
simple average of that in both sides. The normal velocity is obtained by the value of velocity through the Dukowicz approx-
imate Riemann solver along the normal direction of the edge. Then the velocity of the vertex is set to be the arithmetic aver-
age of the velocities along the edges which share this vertex.
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2.2.3. Time discretization
The time marching for the semi-discrete scheme (2.5) can be accomplished by the Euler forward method. Thus the fully
discretized scheme can be written as follows

An+1 n+1 _ An n

PiinViesns = PrgiViediy 0
npén+1 n+1 Ngén n n . n n
M,<+l.1+lvk+l,l+l - Mk+1,1+l Vk+l.l+l M (pc)k+l,l+l Sm(q)c)k#,HlSkJrlul

22 272 272 2772 — At"| — Z F(um.n)Alm.n + 272 2772 22 (2 -14)
MU‘“H Vn+1 _ M(),n Vvn - v (p )" o COS((p )" 1St :
kbt kg kidled” kgld m=1 ¢Iktylty N
T+l nlF n 0
E/H%.u%vk%,u% E,H%H% Vk+%.l+%

Here the variables with the superscripts ‘n’ and ‘n + 1’ represent the values of the corresponding variables at the nth and
(n+ 1)th time steps respectively. The scheme (2.14) is consistent with the Euler equations (2.4) and has first order accuracy
in space and time.

The time step At" is chosen as follows

" . n
A =g min, (Mg Ggs) @13

where Al,,;,, is the shortest edge length of the cell I

11:3 and CZ%J% is the sound speed within this cell. The Courant
number 4 in the following tests is set to be 0.5 unless otherwise stated.

In our numerical tests, the scheme in Eq. (2.14) can work well in most cases. However in some of the more demanding
tests, the scheme is observed to show some instability. It seems that a good way to enhance stability is to use the second-
order TVD Runge-Kutta method [24] for the time discretization. Then the scheme shows very satisfactory stability in all our
numerical tests. We refer the reader to [8] for the implementation details on high order Runge-Kutta methods in a Lagrang-
ian scheme. The usage of higher order TVD Runge-Kutta time discretization simply to enhance stability, not to increase the
order of accuracy, can also be found in [27].

2.2.4. Proof of the spherical symmetry preservation property

In this section, we will prove our scheme (2.14) can keep the spherical symmetry property computed on an equal-angle-
zoned initial grid. Due to the special structure of TVD Runge-Kutta methods [24], that they are convex combinations of Euler
forward steps, the same symmetry-preserving property still holds if it is proved for the Euler forward time discretization.

Theorem. The scheme (2.14) can keep the one-dimensional spherical symmetry property computed on an equal-angle-zoned
initial grid. That is, if the solution has one-dimensional spherical symmetry at the initial time, then the computational solution will
keep this symmetry with the time marching.

Proof. Without loss of the generality, we only need to prove the solution of the scheme (2.14) can keep the spherical sym-
metry at (n + 1)th step, if the solution is known to be of spherical symmetry at nth step. Notice that, for the Lagrangian solu-
tion, symmetry preserving refers to the evolution of both the conserved variables and the grids. O

For the convenience of notation, we adopt the convention that variables without the superscript ‘n + 1’ are those at the
nth time step. Assume that at the nth step the grid is a polar grid with equal angles (see Fig. 2.1) and the cell averages of the
conserved variables including density, momentum and total energy are symmetrical on this grid, namely these variables in
the cells with the same k indices are identical. For simplicity, in the following we will omit the subscript ‘I + 1’ for the vari-
ables which are independent of the [ index, for example,

Prigiey = Pty

Mif%,H% - Mri%?

Ml =My =0, (2.16)
EZ+%,I+% = EI<+%~,

sl’j%”% =Sk fork=1,.. K, I=1,...,L

Next we denote some variables concerning the grid geometry. For simplicity, in the following text, we omit the subscript
‘(k+1,1+1) for the quantities corresponding to the cell edge if it will not bring any confusion. A denotes the angle
between any two neighboring ! lines which is a constant for the equi-angular polar grid under consideration. The value of
¢ at the middle point of each edge is defined as &', m = 1,4, the length of each cell edge is denoted as {AI", m = 1,4}. Since
the grid is symmetrical, &' and AI™, for m = 1,4, are independent of the [ index, thus we denote them as

=8 =buyp &=&Gn &=&

A= AP = Al g, AP = Algy,  Al' = Al (2.17)
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Considering an arbitrary cell I,<+%_,+%, for the convenience of proof, in the following, we will project all the variables relative to
the determination of the cell’s flux and velocity to its local ¢-6 coordinates. For example, the outward normal direction
n = (n¢,n,) of the cell’s four edges in the local ¢-0 coordinates are as follows

= <7 sin (% A(p) ,Cos (% A(p>>,
(nf,n}) = (~1,0).

In the following, we will first prove the symmetry of the grid at the (n + 1)th step.

We will look at the velocity on each cell edge first. For this purpose we need to determine UJ'™* = (p™* M, E™) and M™*,
for m=1,4, where M{"™* is the tangential momentum at the two sides of Edge m. (p™,M},E") denote density, normal
momentum and total energy at the edge which are obtained from UJ** through the Dukowicz approximate Riemann solver.
The pressure, normal velocity and tangential velocity at Edge m are defined as p™, u™, u!" respectively, where
=M/ pm M /pm), ult = M /p™.

Using (2.16), we have

p = pk%ﬂ

' _ Ek+%

,027 = pk+%7 p2+ = pk+%7
B = Ek+%= B = EI<+%7
p3i = ,bk+%7

E3i _ Ek+%

pt = Pt pt = Pt
EY =E., E"=E

As to the momentum involved in Eq. (2.14), by simple manipulation, we can obtain the momentum at four edges of Cell
L in its local ¢-0 coordinates,

M =M, M; =0,

1
k+5

M} = Mi+% cos(Ap), M;" = ,Mi+% sin(A),

2— W 2-
MI =M, M; =0,
M* =M¢ M* =0

¢ k+3° 0 )

M = M;ﬁg cos(Ap), M = Mi+% sin(A@),
M =M, M =0,

k+3?

4 Fre 4-
M =M, M =0,
4+ Vs 4+
ME =M, M;' =0.

Thus,
- o . (1 —y
My~ = (M. ,M}")- (nl,n}) = —sin <§A¢>ME+%’

. (1 —.
MY = (M2 M) - (ntom) =sin (540 )1

&

: (n§7 n%) = m[i+%7

: (n§7 nﬁ) = mICG%

. (1 .
- (n,n) =sin <§A(p> M.,
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k=3’

M = (M‘f’,Mﬁ’) (nfnf) = -M:

M‘” (M‘” M‘H) ) ( ? n;}) _ _Mi+%7
M = (MM} )- <c

M = (M?,M;*) : (c

M =M =0,

M =M M) (cos (%Aq)) ,sin GA(,)))) = ( A‘P) kil
M = (M?+~,M3+> . <cos (%Ag{))),sin (% A(p)>) = Cos <§A¢>Mi+%,

M =M} =0.

Then we have

_ _ . (1 _ . (1
Ul = (pk+%,—5m <§A(/)> /<+17Ek+1>7 U3~+ - (pk+%,51n <§Aq))Mk+_ Ek+>

_ _ . (1 _ . (1 —
Ua = <pk+%= Sin <_AQD> ke 17Ek+—>7 U3+ = <pk+%’ —Sin <i A@)M;+1,Ek+7>,
U37 <pk+1 k+17EI<+ ) UvJr = (pk+§7 k+3’Ek+3)
U‘yli (pk 1, = k 17Ek——>7 <pk+17_ k+‘ EI<+—>

By the Dukowicz approximate Riemann solver, we obtain u! = u3 = 0, p' = p? and 12, u?, p? and p* are independent of the
‘I’ index since Uﬁi and U#* are independent of the ‘I’ index. The tangential velocities at each edge are as follows

1 _ 1 ..
u = (M}~ /p' + M} /p" ) = cos <§A¢>) Mo/ Piy

and

0S
0S

_1 3— 3- 3+ ,3+) 1 N ¢
u} =2 (M2 /p* + MY [p*) = cos (54 )My, /b,
2 1 2— 7 22— 24+ 7 2+

=5 (M /0> M) =0,

1

=5 (Mi/p* + M /pt) = 0.
By now, we can get the conclusion that the pressure, normal velocity and tangential velocity at the cell edges are symmet-
rical in the angular direction. For simplicity, we denote the pressure, normal velocity and tangential velocity at the edge con-
necting the points (k1) and (k,I+ 1) to be py, (uy), and (u.), for any k € [1,K], [ € [1,L — 1], and denote those at the edge
connecting the points (k,I) and (k+1,1) to be p;,, (uy),,3 and (ur),y for any k € [1,K—1], [ € [1,L] respectively, namely,
for Cell I 11,
= p3 = pk+%7 p2 = pl<+17 p4 = D
I' = (ul')k+% =0, u3 = (uv)k+17 ui = _(uV)k+

1 3 2 4
U =y = (ut)k+%7 uy =0, u =0

=0, ud=—-(w), (2.18)

1
2

By now, we can conclude that the magnitude of the velocity at the cell edges in the radial direction with the same k index
is identical and its direction is the edge’s tangential direction. While the magnitude of the velocity at the cell edges in the
angular direction with the same k index is identical and its direction is the edge’s normal direction, see Fig. 2.2. All the values
of the velocity are independent of the [ index. Denote the value of the composite velocity at the edge connecting the points
(k,1) and (k,I+ 1) to be uy for all k € [1,K], € [1,L — 1], and the value of the composite velocity at the edge connecting the
points (k1) and (k + 1,]) to be Uy for ke [1,K — 1], I € [1,L]. Since the velocity at the vertex is obtained by the arithmetic
average of the four velocities along its four connecting edges (see Section 2.2.2), we have, at the vertex (k,l) in Fig. 2.2,

1 - = - -

U = Zl (uk,%A +u, B +uk+% C+uy D) (219)
1 — — - -

-2 (u,(,%A iy CH+ug(B+ D)) , (2.20)

where A, C are the unit tangential vector and B, D are the unit normal vector of the relative edges.
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A 1+2

1+1

Fig. 2.2. The sketch of velocities at the edges connected to the vertex (k,I).

Since the grid is equi-angular, we have A= E, B +B = ocE, where o = 2 cos1 Ag is a constant for the given equi-angular
polar grids. Thus we get

‘1 —
Wt = 7 (Wey + ey + o) C. (2.21)
Eq. (2.21) indicates that the velocities at the vertices with the same k index are identical and their directions are along their
radial directions. Thus we have finished the proof of the symmetry of the grid at the (n + 1)th step.
Next we will prove that the symmetry can also be maintained for the evolved conserved variables at the (n + 1)th step.
Using the symmetry property of grid at (n + 1)th step, the area and volume of Cell Ik%,% at the (n + 1)th step can be
denoted simply as follows
1 1
SZI;.H—% = SZI%]’ VZEH% = (rf)ﬂ%u;-sz%l = (éf)zj:;— 51“(%)1%521%17
where 1. and & are the values of r and ¢ at the cell center respectively. We have omitted the subscript ‘I + 1’ of those variables
which are independent of the [ index, and we have omitted the subscript ‘k + ' and superscript ‘n + 1’ of ¢, since they are
independent of the k and n indices.
Thus, the term at the left hand of Eq. (2.14) can be rewritten as follows

An+1 n+l _ on n AN+l n+lentl _ 5 ¢

Py — ProgiagViedi Pty Sy = Preiy(EcdieaySiey
Apén+1 n+1 _ pén n ngén+1 n+lonsl _ e
M kb4l Vk+%,l+% M kbl keibled ) Mk%‘l% (&) k+3 Sk% M K+ (& )’<+%Sk+%
npo.n+1 n+1 nA0.n n - Sln((pC)H% n0.n+1 n+1.n+1 o ' (2.22)
MI<+%.I+%VI<+%,I+% - Mk+%,l+% Vk*%-”% MI<+%J+%(CC)’<+% Sk+% - Mk+%(éc)l<+%sk+%

Fn+l1 n+1 _Fn n Tn+l s\+lanel _ F

EIH%J% let Ek+%.l+% Viergiag EI<+%J+%(CC)’<+% Siei Ery(Ee)igSisy

The flux term in Eq. (2.14) can be expressed as follows

0
—p'sin ( A(p)r;Al1 +p*r2AP — p?sin (%A(p)rgAF —piriAl

XM:?(UT)AI’” =

" ~p' cos (;A@)rAl' + p* cos (JA@)rAP
plulrl Al + P2 AR + P AP + prutrt Al
0
—p'sin (JA@)AL' (1] + 12) + p*r2AP — priAr
) AN (13 — 1] 1 : (2.23)
p'AL (r} —r})cos (3 Ap)

2 4
PPuAriAl” + ptulriAl

v

where U™, AI™" are simplified as U, Al".
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Using (2.17), (2.18) and the following equalities
= {pyy 8in ((QDC)H% - %A(P)
= &1 Sin(q)c)pr%?
re = Sl sin (((Pc)u% + %A(P) )

re = &esin(c),y,

we have
0
i UMAP *Pk@-ék%Nk% sin(Ap) Sin((Pc)H% +Pk.+1§vk+1Alk+1 Sin(ﬁl’c)u% — D&l Sin((pc),%
= DAl 1Sy SIN(AQ) COS( ),y
i1 (W) 1 Eiest Alieyr SIN(Q) = Pie(Uy) Al SIn(Q)
0
Sin((Pc)H%(—Pk+%fk+%Al/<+% SIN(AQ) + Py1Eki1Ali1 — PréeAlk)
- P 3Sk43 €OS(Qc )13 ' (@24)

Sin((Pc)H%(le (U )1 S Alier — P (Uy) G AL)

Using the equality (2.13), the source term in Eq. (2.14) takes the following form

0 0
(pc )k+‘ I+ sin(¢, )k+] l+15k+’ I Pr1Sk+1 Sin((pc)l%
(Pe )k+l 1+3 COS((P )k+1 I+’sk+1 ym pk+%sk+% COS(QDC)H%
0 0

Thus the scheme (2.14) can be written as

BN g
pZIlllﬂ(g )ZLSZI] pk+ (Cc)k+%sk+%
¢, 1
in(¢,) Mkrrliz( )n+ Zill %( )k+%sk+%
sin(Q.)1
T ML S — My Sy
B CoRysi) = Brg(EgSeay
0 0
SIN(QP )1,y (P Sk Al SIN(AP) + Py 1 &t Alksr — Pre&icAli) PrstSiar SIN(Q )11
=At| — + 2 K 2
pl<+%sk+% COS(QDc)H% p,{%sk% COS(QZ)C)H%
51“(¢c)z+%(l’l<+1(“v)kﬂilmAlkn = Pr(uy) &Al) 0
0
. Prs1& Al 1 SIN(AQ) — Dy qEr1 Alict + PreAl + DraiSpan
:Atsm((pC)H% k3 S k5 2 ke (Ap) k+10k+1 +1 kSk kt52k+5 7 (2.25)
—Diee1 (W) 1 Alsr + () S Al
An+1 _
pk+1 by pk+%(éc)k+%sk+% 0
Aqén+1 — . . B
M’<+£ | 1 M;+%(5C)k+;-sk+% LAt Pie3i3 Al SIN(AQ) — Py Eie1 Alierr + DAl + Dy 1Sy
Af0n+1 - n+1 1
Mk+n2+1+- (éc)lw SZI‘ B 0 0
Frl Ep1(o)iaSkat Prer (W)g1 Sk Alerr + pre(uy) EAl
k+1 l+2 2 2 2
(2.26)

By now, we can make the conclusion that (pzﬂ e M;jm],MZjT IL“EZI} 1 ) only depend on the k index and are indepen-
20

dent of the [ index. Thus we have proved the symmetry preservation property of the scheme.
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Remark. In practice, we can also implement the scheme in the z-r coordinates directly which has the following form with
the Euler forward time discretization

An+l n+l _ an n

Pt Vit — P (TR 0

Mz.rwl Vn+1 _ Mz,n n - M 0
kethleg " kagleh keigh " kabeg n Tppmay A jmn

Mo oyl n =A") - E F(U, )Al + (pc);: LSt ) (2.27)
L kil Y kgl =1 kg by

Fntl  yn+l T n 0

EiaViegny — BigigVienn

where

— 1

M? = / / M,rdrdz
kel el z )
kA Vl<+%,l+% L.

1
k+7.l+7

— 1
M = M,rdrdz
k3143 Vi) o r )
2712

kedicd
fo(U;,U)
fie (U, U))
fur (U, 0))
f ¢(U,,U))

F=

and

fo(U,,U,) =0,
sz (Uv: UV) =pn,r,
fMr (UW UV) =pn,r,
fE(UVﬂ UV) = pu,r,
fo. faes fur and fe are the numerical fluxes for mass, z-momentum, r-momentum and total energy across the cell boundary

respectively. Similar procedures described in this section are used to determine these numerical fluxes and the vertex veloc-
ity. (pc);j%y,% in the source term is determined by the formula (2.13).

3. Numerical results in the two-dimensional cylindrical coordinates

In this section, we perform numerical experiments in two-dimensional cylindrical coordinates. Purely Lagrangian com-
putation, second-order Runge-Kutta time discretization and the ideal gas with y = 5/3 are used in the following tests unless
otherwise stated. Reflective boundary conditions are applied to the z and r axes in all the tests.

3.1. Accuracy test

We test the accuracy of our scheme on a free expansion problem given in [23]. The initial computational domain is
[0,1] x [0,7/2] defined in the polar coordinates. The gas is initially at rest with uniform density p =1 and pressure has
the following distribution

p=1—(22+1%.

The analytical solution of the problem is as follows

R(t) = V14282,

Us(z,1,t) = 22 412
@n) =1 Save
1
p(zvrvt):F7
1 Z+r
p(zvrvt)zﬁ<]7 R2 )7

where R is the radius of the free outer boundary and u; represents the value of velocity in the radial direction.



7202 J. Cheng, C.-W. Shu/Journal of Computational Physics 229 (2010) 7191-7206

Table 3.1
Errors of the scheme in 2D cylindrical coordinates for the free expansion problem using K x L initially equi-angular polar grid cells.
K=L Norm Density Order Momentum Order Energy Order
20 Ly 0.20E-2 0.42E-2 0.12E-2
L. 0.52E-2 0.71E-2 0.45E-2
40 Ly 0.11E-2 0.86 0.21E-2 0.95 0.60E—3 1.05
L. 0.28E-2 0.90 0.39E-2 0.86 0.24E-2 0.88
80 Ly 0.57E-3 0.94 0.11E-2 0.96 0.31E-3 0.95
L. 0.15E-2 0.92 0.21E-2 0.87 0.13E-2 0.93
160 Ly 0.30E-3 0.92 0.57E-3 0.95 0.17E-3 0.88
L. 0.75E-3 0.98 0.12E-2 0.85 0.65E—-3 0.98

Free boundary condition is applied on the outer boundary. The errors of the scheme at t =1 are listed in Table 3.1 which
are measured on the interval [IK,2K] x [1,L] to remove the influence from the boundary. In Table 3.1, we can see the
expected first order accuracy for all the evolved conserved variables.

3.2. Non-oscillatory tests

Example 1 (The Noh problem in a cylindrical coordinate system [21]). We test the Noh problem which is a well known test
problem widely used to validate Lagrangian scheme in the regime of strong shock waves. In this test case, the initial state of
the fluid is uniform with (p,e) = (1,107°) and an inward radial velocity of magnitude 1. The equi-angular polar grid is applied
in the 1-circle computational domain defined in the polar coordinates by [0,1] x [0,7/2]. The shock is generated in a perfect
gas by bringing the cold gas to rest at the origin. The analytical post shock density is 64 and the shock speed is 1/3. Fig. 3.1
shows the initial grid and the final grid at t = 0.6 with 200 x 20 cells and density as a function of radial radius at t = 0.6 for
two different angular zonings (200 x 20,200 x 40). In the plot of the grid, we observe the symmetry is perfectly preserved. In
the plot of density, we observe no spurious oscillation near the discontinuity region. The shock location and the shock
magnitude are closer to the analytical solution with the refinement of the grid in the angular direction which reflects the
convergence trend of the numerical solution toward the analytical solution.

Example 2 (The one-dimensional spherical Sod problem). The Riemann problem proposed by Sod is tested in the cylindrical
coordinates. The initial computational domain is a J-circle region defined in the polar coordinates by [0,20] x [0,7/2]. Its ini-
tial condition is as follows

(p’uivp):(l'oaovl'o)v O<é<107

Reflective boundary condition is applied on the outer boundary. The reference solution is the converged result obtained
by using a one-dimensional second-order Eulerian code in the spherical coordinate with 10,000 grid points. We display in
Fig. 3.2 the numerical results of the grid and density as a function of the radial radius and the surface of density performed
by our scheme with 400 x 10 equi-angular polar cells at t=1.4. We observe the symmetrical behavior of our scheme and
good agreement between our numerical result and the reference solution.

60 Er——_—— exact
r w» — —°— - 20angular cells
L (i - 40 angular cells
50 1, |
3 b
> 40% 1
- @ |
c N
$ sop
it
20 r
3 \{
10f \
R 0 E e
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0 0.1 0.2 0.3
z z radius

Fig. 3.1. The result of the Noh problem at t = 0.6. Left: initial grid with 200 x 20 cells; Middle: final grid with 200 x 20 cells; Right: density vs radial radius
with 200 x 20 and 200 x 40 cells respectively. Solid line: exact solution; dashed line: computational solution.
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Fig. 3.2. The result of the Sod problem at t = 1.4. Left: final grid with 400 x 10 cells; Middle: density versus radial radius. Solid line: exact solution; dashed
line: computational solution; Right: surface of density in the whole circle region obtained by a mirror image.
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Fig. 3.3. The result of the Sedov problem with 100 x 30 cells at t = 1.0. Left: final grid; Middle: density versus radial radius. Solid line: exact solution; dashed
line: computational solution; Right: surface of density.

Example 3 (The Sedov problem in a cylindrical coordinate system [23]). We present the result of the Sedov blast wave in a
cylindrical coordinate system as an example of a diverging shock wave. The initial computational domain is a }-circle region
defined in the polar coordinates by [0,1.125] x [0,7/2] consisting of 100 x 30 equi-angular polar grids. The initial density is
unity and the initial velocity is zero. The internal energy is zero except in the cells connecting the origin where they share a
total value of 0.2468. Reflective boundary condition is applied on the outer boundary. The analytical solution is a shock at
radius unity at time unity with a peak density of 4. The final grid, density as a function of the radial radius and surface of
density are displayed in Fig. 3.3. We observe the expected symmetry in the plot of grid. The position of shock and peak den-
sity are in quite satisfactory agreement with the analytical solution without any spurious oscillations which demonstrates
the good performance of the scheme in symmetrical, non-oscillatory and accuracy properties.

Example 4 (Implosion problem of Lazarus [15]). The implosion problem of Lazarus is a problem with self-similar solution. A
sphere of unit initial radius with zero specific internal energy and unit density is driven by an inward radial velocity given by

_uf

H =1 Ty

(3.1)

where o =0.6883545, f=1 — &t — ot3, £=0.185, 5 = 0.28.

We use a grid of 200 x 30 equal-angle polar cells in the initial computational domain [0, 1] x [0,7/2] defined in the polar
coordinates. The numerically converged result computed using a one-dimensional second-order Lagrangian code in the
spherical coordinate with 10,000 cells is used as a reference solution. Here the Courant number initially is taken as a smaller
value at 0.1, and after t = 0.01 it returns to the normal value 0.5. Fig. 3.4 shows the results of the grid and surface of density
using 200 x 30 grids at t=0.8 and density as a radial radius function at the typical time t = 0.74,0.8 with two different
angular zoned grids (200 x 30,200 x 60) respectively. In the plot of the grid, we notice that symmetry is preserved quite well
as expected for the scheme. In the plot of density, the non-oscillatory and accurate numerical solution and the convergence
tendency of the numerical results toward the reference solution are observed.
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Example 5 (Kidder’s isentropic compression problem [14,17]). This problem involves a self-similar isentropic compression of a
shell filled with perfect gas which is usually used to validate the ability of a Lagrangian scheme in computing a spherical
isentropic compression. The shell initially is a ring shaped region with the internal radius &; and the external radius &,.
The initial density and pressure po, po are defined as follows
1
$2 2 ) f=)
. G- 41 -8 )
PO =\g—ap tazar | o PO =5,
1 - %

2 2

where &, =0.9, & =1.0, p1 =631 x 1074, p, =1072, s = 2.15 x 10% 7y = 5/3. The pressure p;(t) and p,(t) are imposed continu-
ously at the internal and external boundary of the shell respectively which have the following representation

pi(t) = pla(t) 7T, p,(t) = pYa(t) 7,

where p9 = 0.1, p§ =10 and a(t) = /1 — (g)2 in which 7=6.72 x 1072 is the focusing time of the shell and t € [0,7) is the
evolving time.

Denote {(¢,t) to be the radius at the time ¢ of a point initially located at radius ¢, its analytical solution is {(&,t) = a(t)é. The
analytical solutions of three fundamental variables for this problem in spherical geometry are as follows

2

P(L(E D), 0) = po(&)Eal(t) 7T,

P& 0).0) = Po(f)ia(t)"%.

We test the problem initially on the computational region [0.9,1] x [0,7/2] in the polar coordinates with 40 x 20,
80 x 40, 160 x 80 grids respectively. The final time is set to be t = 0.997. Fig. 3.5 shows the initial and final grids and the time
evolution of the position of the external boundary with 40 x 20 grids. Fig. 3.6 shows the results of density, velocity and pres-
sure at the final time. From these figures, we can see the perfect symmetry in the grid. The trajectory of the external bound-
ary coincides with the analytical solution quite well. The numerical solutions of density, velocity and pressure converge to
the analytical solutions asymptotically.

30 reference t=0.74
reference t=0.8
b —-—a—-— 30 angular cells t=0.74 25
25 H —-—a—-- 30 angular cells t=0.8
f v 60 angular cells t=0.74
- 60 angular cells t=0.8
20 20
2 2
- 2 2
§® 8 15
10
10
5
{
- o . o0 5
0.4
0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4 0 01 03 =102 0.3
z radius z 03 040 017%

Fig. 3.4. The result of the Lazarus problem. Left: final grid with 200 x 30 cells at t = 0.8; Middle: density versus radial radius at t = 0.74, 0.8 with 200 x 30
and 200 x 60 cells respectively. Solid line: reference solution; dashed line: computational solution; Right: surface of density at t = 0.8 with 200 x 30 cells.

0.14 L
L exact
L 0.12 L N T numerical 40*20
08 L [ 0.8+
: o1} :
0.6+ r L
[ 0.08F S o6l
= r = [ i L
04k 0.06 |- = r
r 0.04F 041
0.2+ r L
r 0.02 L
[ F 0.2}
Ol v w1 NI SN NI RIS EE I R E
0 0.2 0.4 0.6 0.8 1 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.002 0.004 0.006
z z time

Fig. 3.5. The result of the Kidder problem with 40 x 20 grids. Left: initial grid; Middle: final grid at t=0.997; Right: trajectory of external boundary
compared with the exact solution. Solid line: exact solution; dashed line: computational solution.
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Fig. 3.6. The result of the Kidder problem at t = 0.997 with three different zonings. Left: density versus radial radius; Middle: velocity vs radial radius; Right:
pressure vs radial radius. Solid line: exact solution; dashed line: computational solution.

Example 6 (Coggeshall expansion problem [10]). This is a two-dimensional adiabatic compression problem proposed by Cog-
geshall. The computational domain consists of a quarter of a sphere of unit radius zoned with 100 x 10 grids. The initial den-
sity is unity and the initial velocity at the grid vertices is given as (u,,u;) = (—z/4, —r). The specific internal energy of a cell is
given as e = (3z./8)%, where z. is the z coordinate of the cell center. Fig. 3.7 shows the results of the grid and density plotted as
a function of the radial radius along each I line at the time of 0.8 when the analytical density is expected to be flat with a
value of 37.4. From the figures, we can observe the numerical result is in agreement with the analytical solution except
for the small region near the origin. This example serves the purpose of testing the performance of our scheme on a problem
with an initial equal-angle-zoned grid evolving into a non-symmetric grid.

Example 7 (Cylindrical Noh problem on the Cartesian grid [21]). We test the Noh problem with the Cartesian grid in a cylin-
drical coordinate system to verify the performance of our scheme on non-polar grid. The problem domain is [0,1] x [0,1].
The initial state of the fluid is uniform with (p,u,,u,,e)=(1,0,—1,107>). Reflective boundary conditions are applied on the
left, right and lower boundaries. Inflow boundary condition is used on the upper boundary. The shock is generated in a per-
fect gas by bringing the cold gas to rest at a rigid wall (r = 0). The analytical post shock density is 16 and the shock speed is 1/
3. Fig. 3.8 shows the Lagrangian simulation results of our schemes at t = 0.6 with 10 x 200 grids. We observe good perfor-
mance of our scheme in this problem on the Cartesian quadrilateral grid.
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Fig. 3.7. The result of the Coggeshall problem at t = 0.8. Left: initial grid; Middle: final grid; Right: density versus the radial radius.
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Fig. 3.8. The result of the Noh problem at t = 0.6. Left: initial grid; Middle: final grid; Right: density as a function of r. Solid line: exact solution; dashed line:
computational solution.
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4. Concluding remarks

In this paper we have described a new cell-centered Lagrangian schemes for solving Euler equations in cylindrical
coordinates. The scheme can preserve the symmetry property for one-dimensional spherical problem computed on an
equal-angle-zoned initial grid. Compared with many current Lagrangian type schemes, our scheme has the distinguished
feature in being able to guarantee both symmetry and conservation properties for all conserved variables including mass,
momentum and total energy. Several two-dimensional examples in the cylindrical coordinates have been presented which
demonstrate the good performance of the scheme. The strategy proposed in this paper is hopefully applicable to certain
other existing schemes to obtain the symmetry property without loss of their original good properties. This generalization,
as well as the improvement of the scheme in accuracy and robustness, constitute our future work.
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